Présentations des ateliers


Atelier 1 : Des croquis comme support de raisonnement – La CII Université

L’articulation entre différents registres (analytique, algébrique, géométrique) contribue à une meilleure appropriation des notions mathématiques. Les croquis réalisés à main levée jouent un rôle important dans cette articulation tant au lycée qu’à l’université.
Dans cet atelier nous vous proposons différents exemples mettant en évidence cette importance, notamment en ce qui concerne le raisonnement.

Atelier 2 : interférence entre langage usuel et logique – Christelle FITAMANT et Chloé SANCANDI de la CII Lycée.

Résumé à venir.

Atelier 3 : Implication : pierre angulaire du raisonnement – Denis GARDES et Dominique BERNARD de la CII Lycée.

On mènera une réflexion sur l’implication mathématique. Sa non compréhension est responsable de
difficultés majeures lors de raisonnements mathématiques.
On invitera les participants à se questionner autour de quelques problèmes, on définira ensuite la
notion d’implication, enfin on étudiera ses difficultés d’enseignement et d’apprentissage.

Atelier 4 : Des croquis comme support de raisonnement – Philippe LAC de la CII Lycée

On présentera , dans cet atelier, quelques  situations du niveau lycée pour lesquelles le lien entre la résolution mathématique et informatique sans aucune précaution peut conduire à des écueils. Il s’agira d’illustrer, par des exemples simples,  le fait que l’appel à l’outil informatique dans une résolution mathématique ne peut se contenter d’une simple traduction en un programme mais au contraire va orienter le raisonnement mathématique en tenant compte de problématiques propres à l’informatique.

Atelier 5 : Raisonnements en arithmétique et géométrie discrète – Denise GRENIER Institut Fourier et IREM – Université Grenoble-alpes – CII Université et CII Lycée

L’arithmétique et la géométrie se croisent en géométrie discrète dans des problèmes qui offrent un regard nouveau sur des notions mathématiques classiques et conduisent à des raisonnements spécifiques. Nous étudierons des problèmes originaux accessibles du collège à l’université.

Atelier 6 : Le raisonnement par récurrence : simple à enseigner ? simple à apprendre ? – Denis GARDES et Dominique BERNARD de la CII Lycée.

Après le visionnement de quelques extraits de vidéos à propos du raisonnement par récurrence, nous
présenterons mathématiquement le raisonnement par récurrence. Puis nous analyserons les
productions d’élèves de Terminale lors de tâches liées au raisonnement par récurrence afin
d’identifier les difficultés de compréhension et de mise en œuvre de ce raisonnement. Enfin nous
proposerons des pistes de remédiation.

Atelier 7 :Que les maths seraient simples sans ces fichues variables ! – Zoé MESNIL et René CORI de la CII Lycée.

L’utilisation de variables est une spécificité du langage mathématique, et une source de difficulté majeure pour les élèves. D’autant que ces variables peuvent être soit muettes (liées) soit parlantes (libres), ce qui, ajouté aux nombreuses ambiguïtés de notre langage, n’arrange rien… Par exemple, les quantifications, qui ont pour effet de rendre les variables muettes, sont trop souvent implicites, et cela n’aide pas à la compréhension des propositions, et encore moins à l’appropriation des preuves.
Nous illustrerons ce propos par de nombreux exemples d’expressions mathématiques, d’extraits de manuels.

Atelier 8 : Booléens et preuve de programme – Emmanuel BEFFARA de la C3I

Le type de donnée « booléen » est le plus simple de l’informatique puisqu’il n’a que deux valeurs, généralement appelées « vrai » et « faux ». Cela n’en fait pas l’objet le plus simple à comprendre: il est à la fois lié à la logique (puisqu’il peut représenter les valeurs de vérité classiques), à l’information et son codage (puisqu’il correspond à un bit) et à la programmation (c’est l’ingrédient sur lequel se basent les structures conditionnelles). Le raisonnement sur la correction des programmes met en évidence l’interaction entre ces différents aspects. Le but de cet atelier est d’explorer ce thème, notamment du point de vue de l’enseignement de l’informatique et des mathématiques.